Read Online Computer Simulation Experiments With Models Of Economic Systems

When people should go to the books stores, search inauguration by shop, shelf by shelf, it is essentially problematic. This is why we present the ebook compilations in this website. It will categorically ease you to look guide *computer simulation experiments with models of economic systems* as you such as.

By searching the title, publisher, or authors of guide you in fact want, you can discover them rapidly. In the house, workplace, or perhaps in your method can be every best place within net connections. If you strive for to download and install the computer simulation experiments with models of economic systems, it is extremely easy then, previously currently we extend the member to buy and create bargains to download and install computer simulation experiments with models of economic systems consequently simple!

Design and Modeling for Computer Experiments

-Kai-Tai Fang 2005-10-14

Computer simulations based on mathematical models have become ubiquitous across the engineering disciplines and throughout the physical sciences. Successful use of a simulation model, however, requires careful interrogation

Computer Simulation Experiments with Models of Economic Systems

-Thomas H. Naylor 1971

Computer Simulation Experiments with Models of Inventory Systems

-Roberto Salom 1972
of the model through systematic computer experiments. While specific theoretical/mathematical examinations of computer experim

Health Care Evaluation Using Computer Simulation-Boris Sobolev
2012-07-12 The purpose of this book is to place computer simulation studies within the paradigm of intervention research that is concerned with comparing the outcomes of health care delivered under different policies. This book presents computer simulation as a tool for testing various policy alternatives that have been developed by decision-makers within health care systems. This approach differs from the use of computer simulation in operations research, where simulation helps determine the configurations of a system that will allow it to function optimally. Although simulation of health care processes is not new, few health care systems have used simulations as a basis for re-engineering the delivery of health services. There is growing appreciation that the complexity of health care processes exceeds the capacity of individual disciplines-health services research, health economics, or operations research-to guide health care reform. In this book, the authors focus on bringing the methodological rigor of evaluative research to the design and analysis of such simulation studies. The book is intended as a reference for health services researchers. It offers a comprehensive description of the methodology of conducting simulation studies in evaluation of service alternatives in surgical care using discrete-event models, including the steps for identifying the clinical and managerial activities of the perioperative process, determining the model requirements, implementing simulation models, designing simulation experiments and analyzing the experimental data, and interpreting and reporting results. The book also offers examples of specific aspects of conducting simulation experiments: how
to determine the number of runs needed to estimate the effect of implementing a health care policy; how to allocate the number of runs to study groups in simulation experiments aiming to evaluate policy or management alternatives; and how to use statistical analysis to estimate, interpret, and report effect sizes.

Current Issues in Computer Simulation

Nabil R. Adam 2014-05-09

Current Issues in Computer Simulation is a collection of papers dealing with computer simulation languages, statistical aspects of simulation, linkage with optimization and analytical models, as well as theory and application of simulation methodology. Some papers explain the General Purpose Simulation System (GPSS), a programming package incorporating a language to simulate discrete systems; and the SIMSCRIPT, a general-purpose simulation language using English commands, for example, FORTRAN. Another simulation language is the General Activity Simulation Program (GASP), providing for an organizational structure to build models to simulate the dynamic performance of systems on a digital computer. Other papers discuss simulation models of real systems, including corporate simulation models, multistage consumer choice process, determination of maximum occupancy for hospital facilities, and the juvenile court system. Many computer simulations are statistical sampling experiments performed on a model of the system under investigation. Other papers discuss some of the variables involved in the statistical design and analysis of simulation experiments such as variance reduction techniques, generation of random variates, and experimental layout. For example, one application simulates inventory systems when many items are stocked in various locations. The collection is suitable for programmers, computer engineers, businessmen, hospital administrators, schools officials, and depositories of huge volumes.
of information or data.

Foundations and Methods of Stochastic Simulation
Barry Nelson 2013-01-31 This graduate-level text covers modeling, programming and analysis of simulation experiments and provides a rigorous treatment of the foundations of simulation and why it works. It introduces object-oriented programming for simulation, covers both the probabilistic and statistical basis for simulation in a rigorous but accessible manner (providing all necessary background material); and provides a modern treatment of experiment design and analysis that goes beyond classical statistics. The book emphasizes essential foundations throughout, rather than providing a compendium of algorithms and theorems and prepares the reader to use simulation in research as well as practice. The book is a rigorous, but concise treatment, emphasizing lasting principles but also providing specific training in modeling, programming and analysis. In addition to teaching readers how to do simulation, it also prepares them to use simulation in their research; no other book does this. An online solutions manual for end of chapter exercises is also be provided.

Modeling and Simulation
Stanislaw Raczynski 2014-09-02 Simulation is the art of using tools – physical or conceptual models, or computer hardware and software, to attempt to create the illusion of reality. The discipline has in recent years expanded to include the modelling of systems that rely on human factors and therefore possess a large proportion of uncertainty, such as social, economic or commercial systems. These new applications make the discipline of modelling and simulation a field of dynamic growth and new research. Stanislaw Raczynski outlines the considerable and promising research that is being conducted to counter the problems of uncertainty surrounding the methods used to approach these new applications. It aims to
stimulate the reader into seeking out new tools for modelling and simulation. Examines the state-of-the-art in recent research into methods of approaching new applications in the field of modelling and simulation. Provides an introduction to new modelling tools such as differential inclusions, metric structures in the space of models, semi-discrete events, and use of simulation in parallel optimization techniques. Discusses recently developed practical applications: for example the PASION simulation system, stock market simulation, a new fluid dynamics tool, manufacturing simulation and the simulation of social structures. Illustrated throughout with a series of case studies. Modelling and Simulation: The Computer Science of Illusion will appeal to academics, postgraduate students, researchers and practitioners in the modelling and simulation of industrial computer systems. It will also be of interest to those using simulation as an auxiliary tool.

Using Particles - R.W Hockney 1988-01-01
Computer simulation of systems has become an important tool in scientific research and engineering design, including the simulation of systems through the motion of their constituent particles. Important examples of this are the motion of stars in galaxies, ions in hot gas plasmas, electrons in semiconductor devices, and atoms in solids and liquids. The behavior of the system is studied by programming into the computer a model of the system and then performing experiments with this model. New scientific insight is obtained by observing such computer experiments, often for controlled conditions that are not accessible in the laboratory. Computer Simulation using Particles deals with the simulation of systems by following the motion of their constituent particles. This book provides an introduction to simulation using particles based on the NGP, CIC, and P3M algorithms and the programming principles that assist with the preparations of large simulation programs.
based on the OLYMPUS methodology. It also includes case study examples in the fields of astrophysics, plasmas, semiconductors, and ionic solids as well as more detailed mathematical treatment of the models, such as their errors, dispersion, and optimization. This resource will help you understand how engineering design can be assisted by the ability to predict performance using the computer model before embarking on costly and time-consuming manufacture.

Systems Modeling and Computer Simulation-Naim Kheir 2018-12-12 This second edition describes the fundamentals of modelling and simulation of continuous-time, discrete time, discrete-event and large-scale systems. Coverage new to this edition includes: a chapter on non-linear systems analysis and modelling, complementing the treatment of of continuous-time and discrete-time systems and a chapter on the computer animation and visualization of dynamical systems motion.

Statistics, Testing, and Defense Acquisition-National Research Council 1999-09-17 The Panel on Statistical Methods for Testing and Evaluating Defense Systems had a broad mandate-to examine the use of statistics in conjunction with defense testing. This involved examining methods for software testing, reliability test planning and estimation, validation of modeling and simulation, and use of modern techniques for experimental design. Given the breadth of these areas, including the great variety of applications and special issues that arise, making a contribution in each of these areas required that the Panel's work and recommendations be at a relatively general level. However, a variety of more specific research issues were either brought to the Panel's attention by members of the test and acquisition community, e.g., what was referred to as Dubin's challenge (addressed in the Panel's interim report), or were identified by members of the panel. In many of these
cases the panel thought that a more in-depth analysis or a more detailed application of suggestions or recommendations made by the Panel would either be useful as input to its deliberations or could be used to help communicate more individual views of members of the Panel to the defense test community. This resulted in several research efforts. Given various criteria, especially immediate relevance to the test and acquisition community, the Panel has decided to make available three technical or background papers, each authored by a Panel member jointly with a colleague. These papers are individual contributions and are not a consensus product of the Panel; however, the Panel has drawn from these papers in preparation of its final report: Statistics, Testing, and Defense Acquisition. The Panel has found each of these papers to be extremely useful and they are strongly recommended to readers of the Panel’s final report.

Calculated Surprises

If all philosophy starts with wondering, then Calculated Surprises starts with wondering about how computers are changing the face and inner workings of science. In this book, Lenhard concentrates on the ways in which computers and simulation are transforming the established conception of mathematical modeling. His core thesis is that simulation modeling constitutes a new mode of mathematical modeling that rearranges and inverts key features of the established conception. Although most of these new key features--such as experimentation, exploration, or epistemic opacity--have their precursors, the new ways in which they are being combined is generating a distinctive style of scientific reasoning. Lenhard also documents how simulation is affecting fundamental concepts of solution, understanding, and validation. He feeds these transformations back into philosophy of science, thereby opening up new perspectives on longstanding oppositions. By combining historical
investigations with practical aspects, Calculated Surprises is accessible for a broad audience of readers. Numerous case studies covering a wide range of simulation techniques are balanced with broad reflections on science and technology. Initially, what computers are good at is calculating with a speed and accuracy far beyond human capabilities. Lenhard goes further and investigates the emerging characteristics of computer-based modeling, showing how this simple observation is creating a number of surprising challenges for the methodology and epistemology of science. These calculated surprises will attract both philosophers and scientific practitioners who are interested in reflecting on recent developments in science and technology.

Description of a Mathematical Model for Computer Simulation Experiments on an Integrated Complex

Irrigation Water Supply System

Science in the Age of Computer Simulation

Eric Winsberg 2010-10-30

Computer simulation was first pioneered as a scientific tool in meteorology and nuclear physics in the period following World War II, but it has grown rapidly to become indispensable in a wide variety of scientific disciplines, including astrophysics, high-energy physics, climate science, engineering, ecology, and economics. Digital computer simulation helps study phenomena of great complexity, but how much do we know about the limits and possibilities of this new scientific practice? How do simulations compare to traditional experiments? And are they reliable? Eric Winsberg seeks to answer these questions in Science in the Age of Computer Simulation. Scrutinizing these issue with a philosophical lens, Winsberg explores the impact of simulation on such issues as the nature of scientific evidence; the role of
values in science; the nature and role of fictions in science; and the relationship between simulation and experiment, theories and data, and theories at different levels of description. Science in the Age of Computer Simulation will transform many of the core issues in philosophy of science, as well as our basic understanding of the role of the digital computer in the sciences.

Catalyzing Inquiry at the Interface of Computing and Biology-National Research Council 2006-01-01 Advances in computer science and technology and in biology over the last several years have opened up the possibility for computing to help answer fundamental questions in biology and for biology to help with new approaches to computing. Making the most of the research opportunities at the interface of computing and biology requires the active participation of people from both fields. While past attempts have been made in this direction, circumstances today appear to be much more favorable for progress.

To help take advantage of these opportunities, this study was requested of the NRC by the National Science Foundation, the Department of Defense, the National Institutes of Health, and the Department of Energy. The report provides the basis for establishing cross-disciplinary collaboration between biology and computing including an analysis of potential impediments and strategies for overcoming them. The report also presents a wealth of examples that should encourage students in the biological sciences to look for ways to enable them to be more effective users of computing in their studies.

Computer Simulation Techniques-Thomas H. Naylor 1968 Provides a detailed treatment of the methods and procedures involved in planning and designing computer simulation experiments as well as the theory on which these methods are based.
Hypothesis-Driven Simulation Studies-Fabian Lorig 2019-08-16 Fabian Lorig develops a procedure model for hypothesis-driven simulation studies which supports the design, conducting, and analysis of simulation experiments. It is aimed at facilitating the execution of simulation studies with regard to the replicability and reproducibility of the results. In comparison to existing models, this approach is based on a formally specified hypothesis. Each step of the simulation study can be adapted to the central hypothesis and performed in such a way that it can optimally contribute to the verification and thus to the confirmation or rejection of the hypothesis.

Methods for Factor Screening in Computer Simulation Experiments-1979 The use of a computer simulation model may be viewed as an experiment in which a set of k input variables are combined to produce at least one output or response variable. As in any experimental situation, the design of a computer simulation experiment is important. In general, not all k input variables or factors will be equally important in their effect on the response variable(s). It is very common to find that only a subset, say g

Handbooks in Operations Research and Management Science: Simulation-Shane G. Henderson 2006-09-02 This Handbook is a collection of chapters on key issues in the design and analysis of computer simulation experiments on models of stochastic systems. The chapters are tightly focused and written by experts in each area. For the purpose of this volume “simulation refers to the analysis of stochastic processes through the generation of sample paths (realization) of the processes. Attention focuses on design and analysis issues and the goal of this volume is to survey the concepts, principles, tools and techniques that underlie the
theory and practice of stochastic simulation design and analysis. Emphasis is placed on the ideas and methods that are likely to remain an intrinsic part of the foundation of the field for the foreseeable future. The chapters provide up-to-date references for both the simulation researcher and the advanced simulation user, but they do not constitute an introductory level ‘how to’ guide. Computer scientists, financial analysts, industrial engineers, management scientists, operations researchers and many other professionals use stochastic simulation to design, understand and improve communications, financial, manufacturing, logistics, and service systems. A theme that runs throughout these diverse applications is the need to evaluate system performance in the face of uncertainty, including uncertainty in user load, interest rates, demand for product, availability of goods, cost of transportation and equipment failures. * Tightly focused chapters written by experts * Surveys concepts, principles, tools, and techniques that underlie

the theory and practice of stochastic simulation design and analysis * Provides an up-to-date reference for both simulation researchers and advanced simulation users

Reconstructing Reality-Margaret Morrison 2015 This text examines issues related to the way modelling and simulation enable us to reconstruct aspects of the world we are investigating. It also investigates the processes by which we extract concrete knowledge from those reconstructions and how that knowledge is legitimated.

The Use of Simulation Models in Model Driven Experimentation- 1999 In model driven or model based experimentation, the model of the experiment is a key component of the closed loop model of the process. The model is created through interaction with the team designing the experimental organizations as well as the team creating the experimental environment.
Starting with preliminary descriptions, the model evolves as more specific details are available and influences the final experimental design. The methodology used to design the model reflects both the types of design information available and the underlying hypothesis of the experiment. Experiments validating fixed types of structures or processes lead to a model designed with a Structured Analysis Design Technique which leads to an explicit but rigid model design. Experiments investigating adaptation require a more flexible model which can be created using an Object Oriented design approach. This leads to a more flexible, object view of the experimental design. Either approach leads to an appropriate set of models from which an executable model can be derived. The executable model is used to carry out simulations in order to analyze the dynamic behavior of the model, an input scenario must be created based on the actual inputs that will be used in the experimental setting. When the model is stimulated with the scenario, its behavior can be observed and its performance measured on different criteria. Because it is a computer simulation, input parameters can be varied, constraints can be relaxed, and other variables (possibly) affecting the hypotheses can be explored to see their effect on the model and by inference the experiment. These results can then be made available to the design teams to influence further iterations of the design. Indeed, the model allows the consideration of many excursions, a situation that is not possible when the experiments include teams of humans.

Numerical Modeling and Computer Simulation
Dragan Cvetković 2020-05-06
Information technologies have changed people’s lives to a great extent, and now it is almost impossible to imagine any activity that does not depend on computers in some way. Since the invention of first computer systems, people have been trying to avail computers in order to solve complex problems in
various areas. Traditional methods of calculation have been replaced by computer programs that have the ability to predict the behavior of structures under different loading conditions. There are eight chapters in this book that deal with: optimal control of thermal pollution emitted by power plants, finite difference solution of conjugate heat transfer in double pipe with trapezoidal fins, photovoltaic system integrated into the buildings, possibilities of modeling Petri nets and their extensions, etc.

Computer Simulation Using Particles

R.W Hockney 2021-03-24

Computer simulation of systems has become an important tool in scientific research and engineering design, including the simulation of systems through the motion of their constituent particles. Important examples of this are the motion of stars in galaxies, ions in hot gas plasmas, electrons in semiconductor devices, and atoms in solids and liquids. The behavior of the system is studied by programming into the computer a model of the system and then performing experiments with this model. New scientific insight is obtained by observing such computer experiments, often for controlled conditions that are not accessible in the laboratory. Computer Simulation using Particles deals with the simulation of systems by following the motion of their constituent particles. This book provides an introduction to simulation using particles based on the NGP, CIC, and P3M algorithms and the programming principles that assist with the preparations of large simulation programs based on the OLYMPUS methodology. It also includes case study examples in the fields of astrophysics, plasmas, semiconductors, and ionic solids as well as more detailed mathematical treatment of the models, such as their errors, dispersion, and optimization. This resource will help you understand how engineering design can be assisted by the ability to predict performance using the computer model before embarking on costly and time-consuming
DIGITAL COMPUTER SIMULATION: STATISTICAL CONSIDERATIONS.- 1967
The report discusses the statistical problems that arise in computer simulation experiments. Three problem areas inherent in all stochastic system simulation models are discussed: verification, which determines whether a model actually behaves as an experimenter assumes it does; validation, which tests whether the model reasonably approximates a real system; and problem analysis, which seeks to ensure proper execution of a simulation and proper handling of its results. The study traces the elements of a simulation experiment from initial conception to analysis of final results, defining the statistical problems that arise at each step and relating them to the formal body of statistical theory. Since the aim is to promote awareness of problems, not to solve them, the study offers no general solutions but provides references germane to the statistical problems described.

Computer Simulation Using Particles-R.W Hockney 2021-03-24
Computer simulation of systems has become an important tool in scientific research and engineering design, including the simulation of systems through the motion of their constituent particles. Important examples of this are the motion of stars in galaxies, ions in hot gas plasmas, electrons in semiconductor devices, and atoms in solids and liquids. The behavior of the system is studied by programming into the computer a model of the system and then performing experiments with this model. New scientific insight is obtained by observing such computer experiments, often for controlled conditions that are not accessible in the laboratory. Computer Simulation using Particles deals with the simulation of systems by following the motion of their constituent particles. This book provides
an introduction to simulation using particles based on the NGP, CIC, and P3M algorithms and the programming principles that assist with the preparations of large simulation programs based on the OLYMPUS methodology. It also includes case study examples in the fields of astrophysics, plasmas, semiconductors, and ionic solids as well as more detailed mathematical treatment of the models, such as their errors, dispersion, and optimization. This resource will help you understand how engineering design can be assisted by the ability to predict performance using the computer model before embarking on costly and time-consuming manufacture.

Testing and Validation of Computer Simulation Models-David J. Murray-Smith 2015-10-08 This must-read text/reference provides a practical guide to processes involved in the development and application of dynamic simulation models, covering a wide range of issues relating to testing, verification and validation. Illustrative example problems in continuous system simulation are presented throughout the book, supported by extended case studies from a number of interdisciplinary applications. Topics and features: provides an emphasis on practical issues of model quality and validation, along with questions concerning the management of simulation models, the use of model libraries, and generic models; contains numerous step-by-step examples; presents detailed case studies, often with accompanying datasets; includes discussion of hybrid models, which involve a combination of continuous system and discrete-event descriptions; examines experimental modeling approaches that involve system identification and parameter estimation; offers supplementary material at an associated website.

Experiments with Spatial Equilibrium Trade Models--a Computer Simulation Approach-Hiren Sarker 1976
Principles of Modeling and Simulation-John A. Sokolowski 2011-09-20
Explores wide-ranging applications of modeling and simulation techniques that allow readers to conduct research and ask "What if?"
Principles of Modeling and Simulation: A Multidisciplinary Approach is the first book to provide an introduction to modeling and simulation techniques across diverse areas of study. Numerous researchers from the fields of social science, engineering, computer science, and business have collaborated on this work to explore the multifaceted uses of computational modeling while illustrating their applications in common spreadsheets. The book is organized into three succinct parts: Principles of Modeling and Simulation provides a brief history of modeling and simulation, outlines its many functions, and explores the advantages and disadvantages of using models in problem solving. Two major reasons to employ modeling and simulation are illustrated through the study of a specific problem in conjunction with the use of related applications, thus gaining insight into complex concepts. Theoretical Underpinnings examines various modeling techniques and introduces readers to two significant simulation concepts: discrete event simulation and simulation of continuous systems. This section details the two primary methods in which humans interface with simulations, and it also distinguishes the meaning, importance, and significance of verification and validation. Practical Domains delves into specific topics related to transportation, business, medicine, social science, and enterprise decision support. The challenges of modeling and simulation are discussed, along with advanced applied principles of modeling and simulation such as representation techniques, integration into the application infrastructure, and emerging technologies. With its accessible style and wealth of real-world
examples, Principles of Modeling and Simulation: A Multidisciplinary Approach is a valuable book for modeling and simulation courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for researchers and practitioners working in statistics, mathematics, engineering, computer science, economics, and the social sciences who would like to further develop their understanding and knowledge of the field.

Object-Oriented Computer Simulation of Discrete-Event Systems - Jerzy Tyszer
2012-12-06 Object-Oriented Computer Simulation of Discrete-Event Systems offers a comprehensive presentation of a wide repertoire of computer simulation techniques available to the modelers of dynamic systems. Unlike other books on simulation, this book includes a complete and balanced description of all essential issues relevant to computer simulation of discrete event systems, and it teaches simulation users how to design, program and exploit their own computer simulation models. In addition, it uses the object-oriented methodology throughout the book as its main programming platform. The reader is expected to have some background in the theory of probability and statistics and only a little programming experience in C++, as the book is not tied down to any particular simulation language. The book also provides 50 complete simulation problems to assist with writing such simulation programs. Object-Oriented Computer Simulation of Discrete-Event Systems demonstrates the basic and generic concepts used in computer simulation of discrete-event systems in a comprehensive, uniform and self-contained manner.

Design and Analysis of Simulation Experiments - Jack P.C. Kleijnen
2015-07-01 This is a new edition of Kleijnen’s advanced expository book on statistical methods for the Design and Analysis of Simulation Experiments (DASE).
 Altogether, this new edition has approximately 50% new material not in the original book. More specifically, the author has made significant changes to the book’s organization, including placing the chapter on Screening Designs immediately after the chapters on Classic Designs, and reversing the order of the chapters on Simulation Optimization and Kriging Metamodels. The latter two chapters reflect how active the research has been in these areas. The validation section has been moved into the chapter on Classic Assumptions versus Simulation Practice, and the chapter on Screening now has a section on selecting the number of replications in sequential bifurcation through Wald’s sequential probability ration test, as well as a section on sequential bifurcation for multiple types of simulation responses. Whereas all references in the original edition were placed at the end of the book, in this edition references are placed at the end of each chapter.

Discrete-event System Simulation-Jerry Banks 2010
This text provides a basic treatment of discrete-event simulation, including the proper collection and analysis of data, the use of analytic techniques, verification and validation of models, and designing simulation experiments.

Surrogates-Robert B. Gramacy 2020-03-10
Computer simulation experiments are essential to modern scientific discovery, whether that be in physics, chemistry, biology, epidemiology, ecology, engineering, etc. Surrogates are meta-models of computer simulations, used to solve mathematical models that are too intricate to be worked by hand. Gaussian process (GP) regression is a supremely flexible tool for the analysis of
computer simulation experiments. This book presents an applied introduction to GP regression for modelling and optimization of computer simulation experiments. Features: • Emphasis on methods, applications, and reproducibility. • R code is integrated throughout for application of the methods. • Includes more than 200 full colour figures. • Includes many exercises to supplement understanding, with separate solutions available from the author. • Supported by a website with full code available to reproduce all methods and examples. The book is primarily designed as a textbook for postgraduate students studying GP regression from mathematics, statistics, computer science, and engineering. Given the breadth of examples, it could also be used by researchers from these fields, as well as from economics, life science, social science, etc.

Systems Modeling and Computer Simulation-Naim Kheir 2018-12-12 This second edition describes the fundamentals of modelling and simulation of continuous-time, discrete time, discrete-event and large-scale systems. Coverage new to this edition includes: a chapter on non-linear systems analysis and modelling, complementing the treatment of continuous-time and discrete-time systems and a chapter on the computer animation and visualization of dynamical systems motion.

A Comprehensive Input-modeling Framework and Software for Stochastic, Discrete-event Simulation Experiments-Bahar Deler 2002 Providing accurate and automated input modeling support is one of the challenging problems in the application of computer simulation. The models incorporated in current input-modeling software packages often fall short of what is needed because they emphasize independent and identically distributed processes, while dependent multivariate time-series processes occur naturally in the simulation of many real-
life systems. We present a model for representing stationary multivariate time-series input processes with marginal distributions from the Johnson translation system and an autocorrelation structure specified through some finite lag. We then describe how to generate data accurately to drive computer simulations. We also introduce a statistical methodology for fitting stochastic models to dependent time-series input processes. Specifically, an automated and statistically valid algorithm is presented to fit ARTA (Autoregressive-to-Anything) processes with marginal distributions from the Johnson translation system to stationary univariate time-series data. We illustrate the use of the data-generation and data-fitting procedures via examples and provide empirical comparisons with some existing input-modeling procedures.

Human Population Studies contains the proceedings of a conference held at Pennsylvania State University on June 12-14, 1972, under the sponsorship of the Social Science Research Council. The conference provided a forum for discussing the application of computer simulation techniques to human population studies and organized topics around four themes: anthropology and social systems; genetics and adaptive systems; demography; and simulation methodology. Comprised of 23 chapters, this volume begins with an analysis of two tests of computer microsimulation: the effect of an incest taboo on population viability, and the effect of age differences between spouses on the skewing of their consanguineal relationships. The reader is then introduced to computer simulation of incest prohibition and clan proscription rules in closed, finite population; an empirical perspective on simulation models of human population; and models applicable to geographic variation in humans. Subsequent chapters deal with the role of co-
adapted sets in the process of adaptation; simulation of human reproduction; and the mathematics of population simulation models. This book will be of interest to anthropologists, geneticists, biologists, computer scientists, mathematicians, and social scientists.

Computer Simulation of Dynamic Phenomena - Mark L. Wilkins 2013-03-09 A description of computer programs for simulating phenomena in hydrodynamics, gas dynamics, and elastic plastic flow in one, two, and three dimensions. The text covers Maxwell's equations, and thermal and radiation diffusion, while the numerical procedures described permit the exact conservation of physical properties in the solutions of the fundamental laws of mechanics. The author also treats materials, including the use of simulation programs to predict material behavior.

Handbook of Operations Research and Management

Information Science - 2012

Computer Simulation as a Decision Support Tool - Michael Gray Ketcham 1986

Simulation and Learning - Franco Landriscina 2013-03-14 The main idea of this book is that to comprehend the instructional potential of simulation and to design effective simulation-based learning environments, one has to consider both what happens inside the computer and inside the students' minds. The framework adopted to do this is model-centered learning, in which simulation is seen as particularly effective when learning requires a restructuring of the individual mental models of the students, as in conceptual change. Mental models are by themselves simulations, and thus simulation models can extend our biological capacity to carry out simulative reasoning. For this reason, recent approaches in cognitive science like embodied cognition and the
extended mind hypothesis are also considered in the book. A conceptual model called the “epistemic simulation cycle” is proposed as a blueprint for the comprehension of the cognitive activities involved in simulation-based learning and for instructional design.

Computer Simulation Validation - Claus Beisbart

2019-04-09 This unique volume introduces and discusses the methods of validating computer simulations in scientific research. The core concepts, strategies, and techniques of validation are explained by an international team of pre-eminent authorities, drawing on expertise from various fields ranging from engineering and the physical sciences to the social sciences and history. The work also offers new and original philosophical perspectives on the validation of simulations. Topics and features: introduces the fundamental concepts and principles related to the validation of computer simulations, and examines philosophical frameworks for thinking about validation; provides an overview of the various strategies and techniques available for validating simulations, as well as the preparatory steps that have to be taken prior to validation; describes commonly used reference points and mathematical frameworks applicable to simulation validation; reviews the legal prescriptions, and the administrative and procedural activities related to simulation validation; presents examples of best practice that demonstrate how methods of validation are applied in various disciplines and with different types of simulation models; covers important practical challenges faced by simulation scientists when applying validation methods and techniques; offers a selection of general philosophical reflections that explore the significance of validation from a broader perspective. This truly interdisciplinary handbook will appeal to a broad audience, from professional scientists spanning all natural and social sciences, to young scholars new to research with computer simulations.
Philosophers of science, and methodologists seeking to increase their understanding of simulation validation, will also find much to benefit from in the text.

A Simulation Model of TSS
8.1-Michael F. Bauer 1976

The practice of constructing simulation models which can be run on digital computers is a promising methodology for conducting experiments on large scale systems. By using such a model, the analyst can theoretically conduct many experiments which cannot be done on the system being analyzed due to lack of available time, lack of control over the environment, lack of the resources required to configure the system in the manner appropriate to the experiment, or unwillingness to disrupt normal system operation for purposes of experimentation. This paper describes the design and implementation of such a simulation model for a large-scale computing system. Emphasis is placed on the objectives of the model, the various compromises and assumptions which had to be made in the model itself, the collection of data from the system under test, the implementation of the model in the form of a digital computer simulation, and the effort made to validate the simulation. The discrepancies observed in the validation data are discussed, and further experiments are suggested. (Author).